Abstract:Reconstructing semantic-aware 3D scenes from sparse views is a challenging yet essential research direction, driven by the demands of emerging applications such as virtual reality and embodied AI. Existing per-scene optimization methods require dense input views and incur high computational costs, while generalizable approaches often struggle to reconstruct regions outside the input view cone. In this paper, we propose OGGSplat, an open Gaussian growing method that expands the field-of-view in generalizable 3D reconstruction. Our key insight is that the semantic attributes of open Gaussians provide strong priors for image extrapolation, enabling both semantic consistency and visual plausibility. Specifically, once open Gaussians are initialized from sparse views, we introduce an RGB-semantic consistent inpainting module applied to selected rendered views. This module enforces bidirectional control between an image diffusion model and a semantic diffusion model. The inpainted regions are then lifted back into 3D space for efficient and progressive Gaussian parameter optimization. To evaluate our method, we establish a Gaussian Outpainting (GO) benchmark that assesses both semantic and generative quality of reconstructed open-vocabulary scenes. OGGSplat also demonstrates promising semantic-aware scene reconstruction capabilities when provided with two view images captured directly from a smartphone camera.
Abstract:Generative models have demonstrated remarkable abilities in generating high-fidelity visual content. In this work, we explore how generative models can further be used not only to synthesize visual content but also to understand the properties of a scene given a natural image. We formulate scene understanding as an inverse generative modeling problem, where we seek to find conditional parameters of a visual generative model to best fit a given natural image. To enable this procedure to infer scene structure from images substantially different than those seen during training, we further propose to build this visual generative model compositionally from smaller models over pieces of a scene. We illustrate how this procedure enables us to infer the set of objects in a scene, enabling robust generalization to new test scenes with an increased number of objects of new shapes. We further illustrate how this enables us to infer global scene factors, likewise enabling robust generalization to new scenes. Finally, we illustrate how this approach can be directly applied to existing pretrained text-to-image generative models for zero-shot multi-object perception. Code and visualizations are at https://energy-based-model.github.io/compositional-inference.
Abstract:Large language models (LLMs) are increasingly applied to socially grounded tasks, such as online community moderation, media content analysis, and social reasoning games. Success in these contexts depends on a model's social reasoning ability - the capacity to interpret social contexts, infer others' mental states, and assess the truthfulness of presented information. However, there is currently no systematic evaluation framework that comprehensively assesses the social reasoning capabilities of LLMs. Existing efforts often oversimplify real-world scenarios and consist of tasks that are too basic to challenge advanced models. To address this gap, we introduce SocialMaze, a new benchmark specifically designed to evaluate social reasoning. SocialMaze systematically incorporates three core challenges: deep reasoning, dynamic interaction, and information uncertainty. It provides six diverse tasks across three key settings: social reasoning games, daily-life interactions, and digital community platforms. Both automated and human validation are used to ensure data quality. Our evaluation reveals several key insights: models vary substantially in their ability to handle dynamic interactions and integrate temporally evolving information; models with strong chain-of-thought reasoning perform better on tasks requiring deeper inference beyond surface-level cues; and model reasoning degrades significantly under uncertainty. Furthermore, we show that targeted fine-tuning on curated reasoning examples can greatly improve model performance in complex social scenarios. The dataset is publicly available at: https://huggingface.co/datasets/MBZUAI/SocialMaze
Abstract:While (multimodal) large language models (LLMs) have attracted widespread attention due to their exceptional capabilities, they remain vulnerable to jailbreak attacks. Various defense methods are proposed to defend against jailbreak attacks, however, they are often tailored to specific types of jailbreak attacks, limiting their effectiveness against diverse adversarial strategies. For instance, rephrasing-based defenses are effective against text adversarial jailbreaks but fail to counteract image-based attacks. To overcome these limitations, we propose a universal defense framework, termed Test-time IMmunization (TIM), which can adaptively defend against various jailbreak attacks in a self-evolving way. Specifically, TIM initially trains a gist token for efficient detection, which it subsequently applies to detect jailbreak activities during inference. When jailbreak attempts are identified, TIM implements safety fine-tuning using the detected jailbreak instructions paired with refusal answers. Furthermore, to mitigate potential performance degradation in the detector caused by parameter updates during safety fine-tuning, we decouple the fine-tuning process from the detection module. Extensive experiments on both LLMs and multimodal LLMs demonstrate the efficacy of TIM.
Abstract:Image fusion aims to combine complementary information from multiple source images to generate more comprehensive scene representations. Existing methods primarily rely on the stacking and design of network architectures to enhance the fusion performance, often ignoring the impact of dataset scene bias on model training. This oversight leads the model to learn spurious correlations between specific scenes and fusion weights under conventional likelihood estimation framework, thereby limiting fusion performance. To solve the above problems, this paper first re-examines the image fusion task from the causality perspective, and disentangles the model from the impact of bias by constructing a tailored causal graph to clarify the causalities among the variables in image fusion task. Then, the Back-door Adjustment based Feature Fusion Module (BAFFM) is proposed to eliminate confounder interference and enable the model to learn the true causal effect. Finally, Extensive experiments on three standard datasets prove that the proposed method significantly surpasses state-of-the-art methods in infrared and visible image fusion.
Abstract:Large Language Models (LLMs) have achieved remarkable success in Natural Language Processing (NLP), yet their cross-lingual performance consistency remains a significant challenge. This paper introduces a novel methodology for efficiently identifying inherent cross-lingual weaknesses in LLMs. Our approach leverages beam search and LLM-based simulation to generate bilingual question pairs that expose performance discrepancies between English and target languages. We construct a new dataset of over 6,000 bilingual pairs across 16 languages using this methodology, demonstrating its effectiveness in revealing weaknesses even in state-of-the-art models. The extensive experiments demonstrate that our method precisely and cost-effectively pinpoints cross-lingual weaknesses, consistently revealing over 50\% accuracy drops in target languages across a wide range of models. Moreover, further experiments investigate the relationship between linguistic similarity and cross-lingual weaknesses, revealing that linguistically related languages share similar performance patterns and benefit from targeted post-training. Code is available at https://github.com/xzx34/Cross-Lingual-Pitfalls.
Abstract:LLMs often need effective configurations, like temperature and reasoning steps, to handle tasks requiring sophisticated reasoning and problem-solving, ranging from joke generation to mathematical reasoning. Existing prompting approaches usually adopt general-purpose, fixed configurations that work 'well enough' across tasks but seldom achieve task-specific optimality. To address this gap, we introduce AdaReasoner, an LLM-agnostic plugin designed for any LLM to automate adaptive reasoning configurations for tasks requiring different types of thinking. AdaReasoner is trained using a reinforcement learning (RL) framework, combining a factorized action space with a targeted exploration strategy, along with a pretrained reward model to optimize the policy model for reasoning configurations with only a few-shot guide. AdaReasoner is backed by theoretical guarantees and experiments of fast convergence and a sublinear policy gap. Across six different LLMs and a variety of reasoning tasks, it consistently outperforms standard baselines, preserves out-of-distribution robustness, and yield gains on knowledge-intensive tasks through tailored prompts.
Abstract:Bias in Large Language Models (LLMs) significantly undermines their reliability and fairness. We focus on a common form of bias: when two reference concepts in the model's concept space, such as sentiment polarities (e.g., "positive" and "negative"), are asymmetrically correlated with a third, target concept, such as a reviewing aspect, the model exhibits unintended bias. For instance, the understanding of "food" should not skew toward any particular sentiment. Existing bias evaluation methods assess behavioral differences of LLMs by constructing labeled data for different social groups and measuring model responses across them, a process that requires substantial human effort and captures only a limited set of social concepts. To overcome these limitations, we propose BiasLens, a test-set-free bias analysis framework based on the structure of the model's vector space. BiasLens combines Concept Activation Vectors (CAVs) with Sparse Autoencoders (SAEs) to extract interpretable concept representations, and quantifies bias by measuring the variation in representational similarity between the target concept and each of the reference concepts. Even without labeled data, BiasLens shows strong agreement with traditional bias evaluation metrics (Spearman correlation r > 0.85). Moreover, BiasLens reveals forms of bias that are difficult to detect using existing methods. For example, in simulated clinical scenarios, a patient's insurance status can cause the LLM to produce biased diagnostic assessments. Overall, BiasLens offers a scalable, interpretable, and efficient paradigm for bias discovery, paving the way for improving fairness and transparency in LLMs.
Abstract:The rise of Large Audio Language Models (LAMs) brings both potential and risks, as their audio outputs may contain harmful or unethical content. However, current research lacks a systematic, quantitative evaluation of LAM safety especially against jailbreak attacks, which are challenging due to the temporal and semantic nature of speech. To bridge this gap, we introduce AJailBench, the first benchmark specifically designed to evaluate jailbreak vulnerabilities in LAMs. We begin by constructing AJailBench-Base, a dataset of 1,495 adversarial audio prompts spanning 10 policy-violating categories, converted from textual jailbreak attacks using realistic text to speech synthesis. Using this dataset, we evaluate several state-of-the-art LAMs and reveal that none exhibit consistent robustness across attacks. To further strengthen jailbreak testing and simulate more realistic attack conditions, we propose a method to generate dynamic adversarial variants. Our Audio Perturbation Toolkit (APT) applies targeted distortions across time, frequency, and amplitude domains. To preserve the original jailbreak intent, we enforce a semantic consistency constraint and employ Bayesian optimization to efficiently search for perturbations that are both subtle and highly effective. This results in AJailBench-APT, an extended dataset of optimized adversarial audio samples. Our findings demonstrate that even small, semantically preserved perturbations can significantly reduce the safety performance of leading LAMs, underscoring the need for more robust and semantically aware defense mechanisms.
Abstract:We introduce Griffin, the first foundation model attemptation designed specifically for Relational Databases (RDBs). Unlike previous smaller models focused on single RDB tasks, Griffin unifies the data encoder and task decoder to handle diverse tasks. Additionally, we enhance the architecture by incorporating a cross-attention module and a novel aggregator. Griffin utilizes pretraining on both single-table and RDB datasets, employing advanced encoders for categorical, numerical, and metadata features, along with innovative components such as cross-attention modules and enhanced message-passing neural networks (MPNNs) to capture the complexities of relational data. Evaluated on large-scale, heterogeneous, and temporal graphs extracted from RDBs across various domains (spanning over 150 million nodes), Griffin demonstrates superior or comparable performance to individually trained models, excels in low-data scenarios, and shows strong transferability with similarity and diversity in pretraining across new datasets and tasks, highlighting its potential as a universally applicable foundation model for RDBs. Code available at https://github.com/yanxwb/Griffin.