Abstract:Although long-video understanding demands that models capture hierarchical temporal information -- from clip (seconds) and shot (tens of seconds) to event (minutes) and story (hours) -- existing benchmarks either neglect this multi-scale design or scatter scale-specific questions across different videos, preventing direct comparison of model performance across timescales on the same content. To address this, we introduce ScaleLong, the first benchmark to disentangle these factors by embedding questions targeting four hierarchical timescales -- clip (seconds), shot (tens of seconds), event (minutes), and story (hours) -- all within the same video content. This within-content multi-timescale questioning design enables direct comparison of model performance across timescales on identical videos. ScaleLong features 269 long videos (avg.\ 86\,min) from 5 main categories and 36 sub-categories, with 4--8 carefully designed questions, including at least one question for each timescale. Evaluating 23 MLLMs reveals a U-shaped performance curve, with higher accuracy at the shortest and longest timescales and a dip at intermediate levels. Furthermore, ablation studies show that increased visual token capacity consistently enhances reasoning across all timescales. ScaleLong offers a fine-grained, multi-timescale benchmark for advancing MLLM capabilities in long-video understanding. The code and dataset are available https://github.com/multimodal-art-projection/ScaleLong.
Abstract:Large Language Models (\textbf{LLMs}), e.g. ChatGPT, have been widely adopted in real-world dialogue applications. However, LLMs' robustness, especially in handling long complex dialogue sessions, including frequent motivation transfer, sophisticated cross-turn dependency, is criticized all along. Nevertheless, no existing benchmarks can fully reflect these weaknesses. We present \textbf{MARS-Bench}, a \textbf{M}ulti-turn \textbf{A}thletic \textbf{R}eal-world \textbf{S}cenario Dialogue \textbf{Bench}mark, designed to remedy the gap. MARS-Bench is constructed from play-by-play text commentary so to feature realistic dialogues specifically designed to evaluate three critical aspects of multi-turn conversations: Ultra Multi-turn, Interactive Multi-turn, and Cross-turn Tasks. Extensive experiments on MARS-Bench also reveal that closed-source LLMs significantly outperform open-source alternatives, explicit reasoning significantly boosts LLMs' robustness on handling long complex dialogue sessions, and LLMs indeed face significant challenges when handling motivation transfer and sophisticated cross-turn dependency. Moreover, we provide mechanistic interpretability on how attention sinks due to special tokens lead to LLMs' performance degradation when handling long complex dialogue sessions based on attention visualization experiment in Qwen2.5-7B-Instruction.
Abstract:While large language models (LLMs) can solve PhD-level reasoning problems over long context inputs, they still struggle with a seemingly simpler task: following explicit length instructions-e.g., write a 10,000-word novel. Additionally, models often generate far too short outputs, terminate prematurely, or even refuse the request. Existing benchmarks focus primarily on evaluating generations quality, but often overlook whether the generations meet length constraints. To this end, we introduce Length Instruction Following Evaluation Benchmark (LIFEBench) to comprehensively evaluate LLMs' ability to follow length instructions across diverse tasks and a wide range of specified lengths. LIFEBench consists of 10,800 instances across 4 task categories in both English and Chinese, covering length constraints ranging from 16 to 8192 words. We evaluate 26 widely-used LLMs and find that most models reasonably follow short-length instructions but deteriorate sharply beyond a certain threshold. Surprisingly, almost all models fail to reach the vendor-claimed maximum output lengths in practice, as further confirmed by our evaluations extending up to 32K words. Even long-context LLMs, despite their extended input-output windows, counterintuitively fail to improve length-instructions following. Notably, Reasoning LLMs outperform even specialized long-text generation models, achieving state-of-the-art length following. Overall, LIFEBench uncovers fundamental limitations in current LLMs' length instructions following ability, offering critical insights for future progress.
Abstract:Academic posters are vital for scholarly communication, yet their manual creation is time-consuming. However, automated academic poster generation faces significant challenges in preserving intricate scientific details and achieving effective visual-textual integration. Existing approaches often struggle with semantic richness and structural nuances, and lack standardized benchmarks for evaluating generated academic posters comprehensively. To address these limitations, we introduce P2P, the first flexible, LLM-based multi-agent framework that generates high-quality, HTML-rendered academic posters directly from research papers, demonstrating strong potential for practical applications. P2P employs three specialized agents-for visual element processing, content generation, and final poster assembly-each integrated with dedicated checker modules to enable iterative refinement and ensure output quality. To foster advancements and rigorous evaluation in this domain, we construct and release P2PInstruct, the first large-scale instruction dataset comprising over 30,000 high-quality examples tailored for the academic paper-to-poster generation task. Furthermore, we establish P2PEval, a comprehensive benchmark featuring 121 paper-poster pairs and a dual evaluation methodology (Universal and Fine-Grained) that leverages LLM-as-a-Judge and detailed, human-annotated checklists. Our contributions aim to streamline research dissemination and provide the community with robust tools for developing and evaluating next-generation poster generation systems.
Abstract:Reinforcement learning (RL) has recently demonstrated strong potential in enhancing the reasoning capabilities of large language models (LLMs). Particularly, the "Zero" reinforcement learning introduced by Deepseek-R1-Zero, enables direct RL training of base LLMs without relying on an intermediate supervised fine-tuning stage. Despite these advancements, current works for LLM reasoning mainly focus on mathematical and coding domains, largely due to data abundance and the ease of answer verification. This limits the applicability and generalization of such models to broader domains, where questions often have diverse answer representations, and data is more scarce. In this paper, we propose General-Reasoner, a novel training paradigm designed to enhance LLM reasoning capabilities across diverse domains. Our key contributions include: (1) constructing a large-scale, high-quality dataset of questions with verifiable answers curated by web crawling, covering a wide range of disciplines; and (2) developing a generative model-based answer verifier, which replaces traditional rule-based verification with the capability of chain-of-thought and context-awareness. We train a series of models and evaluate them on a wide range of datasets covering wide domains like physics, chemistry, finance, electronics etc. Our comprehensive evaluation across these 12 benchmarks (e.g. MMLU-Pro, GPQA, SuperGPQA, TheoremQA, BBEH and MATH AMC) demonstrates that General-Reasoner outperforms existing baseline methods, achieving robust and generalizable reasoning performance while maintaining superior effectiveness in mathematical reasoning tasks.
Abstract:Recent advancements in large language models (LLMs) underscore the need for more comprehensive evaluation methods to accurately assess their reasoning capabilities. Existing benchmarks are often domain-specific and thus cannot fully capture an LLM's general reasoning potential. To address this limitation, we introduce the Knowledge Orthogonal Reasoning Gymnasium (KORGym), a dynamic evaluation platform inspired by KOR-Bench and Gymnasium. KORGym offers over fifty games in either textual or visual formats and supports interactive, multi-turn assessments with reinforcement learning scenarios. Using KORGym, we conduct extensive experiments on 19 LLMs and 8 VLMs, revealing consistent reasoning patterns within model families and demonstrating the superior performance of closed-source models. Further analysis examines the effects of modality, reasoning strategies, reinforcement learning techniques, and response length on model performance. We expect KORGym to become a valuable resource for advancing LLM reasoning research and developing evaluation methodologies suited to complex, interactive environments.
Abstract:Large multimodal models (LMMs) have recently emerged as a powerful tool for long video understanding (LVU), prompting the development of standardized LVU benchmarks to evaluate their performance. However, our investigation reveals a rather sober lesson for existing LVU benchmarks. First, most existing benchmarks rely heavily on multiple-choice questions (MCQs), whose evaluation results are inflated due to the possibility of guessing the correct answer; Second, a significant portion of questions in these benchmarks have strong priors to allow models to answer directly without even reading the input video. For example, Gemini-1.5-Pro can achieve over 50\% accuracy given a random frame from a long video on Video-MME. We also observe that increasing the number of frames does not necessarily lead to improvement on existing benchmarks, which is counterintuitive. As a result, the validity and robustness of current LVU benchmarks are undermined, impeding a faithful assessment of LMMs' long-video understanding capability. To tackle this problem, we propose VideoEval-Pro, a realistic LVU benchmark containing questions with open-ended short-answer, which truly require understanding the entire video. VideoEval-Pro assesses both segment-level and full-video understanding through perception and reasoning tasks. By evaluating 21 proprietary and open-source video LMMs, we conclude the following findings: (1) video LMMs show drastic performance ($>$25\%) drops on open-ended questions compared with MCQs; (2) surprisingly, higher MCQ scores do not lead to higher open-ended scores on VideoEval-Pro; (3) compared to other MCQ benchmarks, VideoEval-Pro benefits more from increasing the number of input frames. Our results show that VideoEval-Pro offers a more realistic and reliable measure of long video understanding, providing a clearer view of progress in this domain.
Abstract:The point cloud classification tasks face the dual challenge of efficiently extracting local geometric features while maintaining model complexity. The Mamba architecture utilizes the linear complexity advantage of state space models (SSMs) to overcome the computational bottleneck of Transformers while balancing global modeling capabilities. However, the inherent contradiction between its unidirectional dependency and the unordered nature of point clouds impedes modeling spatial correlation in local neighborhoods, thus constraining geometric feature extraction. This paper proposes Hybrid-Emba3D, a bidirectional Mamba model enhanced by geometry-feature coupling and cross-path feature hybridization. The Local geometric pooling with geometry-feature coupling mechanism significantly enhances local feature discriminative power via coordinated propagation and dynamic aggregation of geometric information between local center points and their neighborhoods, without introducing additional parameters. The designed Collaborative feature enhancer adopts dual-path hybridization, effectively handling local mutations and sparse key signals, breaking through the limitations of traditional SSM long-range modeling. Experimental results demonstrate that the proposed model achieves a new SOTA classification accuracy of 95.99% on ModelNet40 with only 0.03M additional.
Abstract:Understanding neural network's (NN) generalizability remains a central question in deep learning research. The special phenomenon of grokking, where NNs abruptly generalize long after the training performance reaches a near-perfect level, offers a unique window to investigate the underlying mechanisms of NNs' generalizability. Here we propose an interpretation for grokking by framing it as a computational glass relaxation: viewing NNs as a physical system where parameters are the degrees of freedom and train loss is the system energy, we find memorization process resembles a rapid cooling of liquid into non-equilibrium glassy state at low temperature and the later generalization is like a slow relaxation towards a more stable configuration. This mapping enables us to sample NNs' Boltzmann entropy (states of density) landscape as a function of training loss and test accuracy. Our experiments in transformers on arithmetic tasks suggests that there is NO entropy barrier in the memorization-to-generalization transition of grokking, challenging previous theory that defines grokking as a first-order phase transition. We identify a high-entropy advantage under grokking, an extension of prior work linking entropy to generalizability but much more significant. Inspired by grokking's far-from-equilibrium nature, we develop a toy optimizer WanD based on Wang-landau molecular dynamics, which can eliminate grokking without any constraints and find high-norm generalizing solutions. This provides strictly-defined counterexamples to theory attributing grokking solely to weight norm evolution towards the Goldilocks zone and also suggests new potential ways for optimizer design.
Abstract:Recently, there has been growing interest in collecting reasoning-intensive pretraining data to improve LLMs' complex reasoning ability. Prior approaches typically rely on supervised classifiers to identify such data, which requires labeling by humans or LLMs, often introducing domain-specific biases. Due to the attention heads being crucial to in-context reasoning, we propose AttentionInfluence, a simple yet effective, training-free method without supervision signal. Our approach enables a small pretrained language model to act as a strong data selector through a simple attention head masking operation. Specifically, we identify retrieval heads and compute the loss difference when masking these heads. We apply AttentionInfluence to a 1.3B-parameter dense model to conduct data selection on the SmolLM corpus of 241B tokens, and mix the SmolLM corpus with the selected subset comprising 73B tokens to pretrain a 7B-parameter dense model using 1T training tokens and WSD learning rate scheduling. Our experimental results demonstrate substantial improvements, ranging from 1.4pp to 3.5pp, across several knowledge-intensive and reasoning-heavy benchmarks (i.e., MMLU, MMLU-Pro, AGIEval-en, GSM8K, and HumanEval). This demonstrates an effective weak-to-strong scaling property, with small models improving the final performance of larger models-offering a promising and scalable path for reasoning-centric data selection.