Abstract:This paper presents our approach for SemEval 2025 Task 11 Track A, focusing on multilabel emotion classification across 28 languages. We explore two main strategies: fully fine-tuning transformer models and classifier-only training, evaluating different settings such as fine-tuning strategies, model architectures, loss functions, encoders, and classifiers. Our findings suggest that training a classifier on top of prompt-based encoders such as mE5 and BGE yields significantly better results than fully fine-tuning XLMR and mBERT. Our best-performing model on the final leaderboard is an ensemble combining multiple BGE models, where CatBoost serves as the classifier, with different configurations. This ensemble achieves an average F1-macro score of 56.58 across all languages.
Abstract:Southeast Asia (SEA) is a region of extraordinary linguistic and cultural diversity, yet it remains significantly underrepresented in vision-language (VL) research. This often results in artificial intelligence (AI) models that fail to capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing high-quality, culturally relevant data for SEA languages. By involving contributors from SEA countries, SEA-VL aims to ensure better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages in VL research. Beyond crowdsourcing, our initiative goes one step further in the exploration of the automatic collection of culturally relevant images through crawling and image generation. First, we find that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing. Second, despite the substantial progress in generative vision models, synthetic images remain unreliable in accurately reflecting SEA cultures. The generated images often fail to reflect the nuanced traditions and cultural contexts of the region. Collectively, we gather 1.28M SEA culturally-relevant images, more than 50 times larger than other existing datasets. Through SEA-VL, we aim to bridge the representation gap in SEA, fostering the development of more inclusive AI systems that authentically represent diverse cultures across SEA.