Abstract:Adversarial samples exploit irregularities in the manifold ``learned'' by deep learning models to cause misclassifications. The study of these adversarial samples provides insight into the features a model uses to classify inputs, which can be leveraged to improve robustness against future attacks. However, much of the existing literature focuses on constrained adversarial samples, which do not accurately reflect test-time errors encountered in real-world settings. To address this, we propose `NatADiff', an adversarial sampling scheme that leverages denoising diffusion to generate natural adversarial samples. Our approach is based on the observation that natural adversarial samples frequently contain structural elements from the adversarial class. Deep learning models can exploit these structural elements to shortcut the classification process, rather than learning to genuinely distinguish between classes. To leverage this behavior, we guide the diffusion trajectory towards the intersection of the true and adversarial classes, combining time-travel sampling with augmented classifier guidance to enhance attack transferability while preserving image fidelity. Our method achieves comparable attack success rates to current state-of-the-art techniques, while exhibiting significantly higher transferability across model architectures and better alignment with natural test-time errors as measured by FID. These results demonstrate that NatADiff produces adversarial samples that not only transfer more effectively across models, but more faithfully resemble naturally occurring test-time errors.
Abstract:Despite the impressive performance of generative Diffusion Models (DMs), their internal working is still not well understood, which is potentially problematic. This paper focuses on exploring the important notion of bias-variance tradeoff in diffusion models. Providing a systematic foundation for this exploration, it establishes that at one extreme the diffusion models may amplify the inherent bias in the training data and, on the other, they may compromise the presumed privacy of the training samples. Our exploration aligns with the memorization-generalization understanding of the generative models, but it also expands further along this spectrum beyond ``generalization'', revealing the risk of bias amplification in deeper models. Building on the insights, we also introduce a training-free method to improve output quality in text-to-image and image-to-image generation. By progressively encouraging temporary high variance in the generation process with partial bypassing of the mid-block's contribution in the denoising process of DMs, our method consistently improves generative image quality with zero training cost. Our claims are validated both theoretically and empirically.
Abstract:Human motion synthesis in complex scenes presents a fundamental challenge, extending beyond conventional Text-to-Motion tasks by requiring the integration of diverse modalities such as static environments, movable objects, natural language prompts, and spatial waypoints. Existing language-conditioned motion models often struggle with scene-aware motion generation due to limitations in motion tokenization, which leads to information loss and fails to capture the continuous, context-dependent nature of 3D human movement. To address these issues, we propose UniHM, a unified motion language model that leverages diffusion-based generation for synthesizing scene-aware human motion. UniHM is the first framework to support both Text-to-Motion and Text-to-Human-Object Interaction (HOI) in complex 3D scenes. Our approach introduces three key contributions: (1) a mixed-motion representation that fuses continuous 6DoF motion with discrete local motion tokens to improve motion realism; (2) a novel Look-Up-Free Quantization VAE (LFQ-VAE) that surpasses traditional VQ-VAEs in both reconstruction accuracy and generative performance; and (3) an enriched version of the Lingo dataset augmented with HumanML3D annotations, providing stronger supervision for scene-specific motion learning. Experimental results demonstrate that UniHM achieves comparative performance on the OMOMO benchmark for text-to-HOI synthesis and yields competitive results on HumanML3D for general text-conditioned motion generation.
Abstract:The rapid evolution of artificial intelligence (AI) has shifted from static, data-driven models to dynamic systems capable of perceiving and interacting with real-world environments. Despite advancements in pattern recognition and symbolic reasoning, current AI systems, such as large language models, remain disembodied, unable to physically engage with the world. This limitation has driven the rise of embodied AI, where autonomous agents, such as humanoid robots, must navigate and manipulate unstructured environments with human-like adaptability. At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability. A Neural Brain must seamlessly integrate multimodal sensing and perception with cognitive capabilities. Achieving this also requires an adaptive memory system and energy-efficient hardware-software co-design, enabling real-time action in dynamic environments. This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges: (1) defining the core components of Neural Brain and (2) bridging the gap between static AI models and the dynamic adaptability required for real-world deployment. To this end, we propose a biologically inspired architecture that integrates multimodal active sensing, perception-cognition-action function, neuroplasticity-based memory storage and updating, and neuromorphic hardware/software optimization. Furthermore, we also review the latest research on embodied agents across these four aspects and analyze the gap between current AI systems and human intelligence. By synthesizing insights from neuroscience, we outline a roadmap towards the development of generalizable, autonomous agents capable of human-level intelligence in real-world scenarios.
Abstract:Object pose estimation is a core means for robots to understand and interact with their environment. For this task, monocular category-level methods are attractive as they require only a single RGB camera. However, current methods rely on shape priors or CAD models of the intra-class known objects. We propose a diffusion-based monocular category-level 9D object pose generation method, MonoDiff9D. Our motivation is to leverage the probabilistic nature of diffusion models to alleviate the need for shape priors, CAD models, or depth sensors for intra-class unknown object pose estimation. We first estimate coarse depth via DINOv2 from the monocular image in a zero-shot manner and convert it into a point cloud. We then fuse the global features of the point cloud with the input image and use the fused features along with the encoded time step to condition MonoDiff9D. Finally, we design a transformer-based denoiser to recover the object pose from Gaussian noise. Extensive experiments on two popular benchmark datasets show that MonoDiff9D achieves state-of-the-art monocular category-level 9D object pose estimation accuracy without the need for shape priors or CAD models at any stage. Our code will be made public at https://github.com/CNJianLiu/MonoDiff9D.
Abstract:Despite their impressive performance, deep visual models are susceptible to transferable black-box adversarial attacks. Principally, these attacks craft perturbations in a target model-agnostic manner. However, surprisingly, we find that existing methods in this domain inadvertently take help from various priors that violate the black-box assumption such as the availability of the dataset used to train the target model, and the knowledge of the number of classes in the target model. Consequently, the literature fails to articulate the true potency of transferable black-box attacks. We provide an empirical study of these biases and propose a framework that aids in a prior-free transparent study of this paradigm. Using our framework, we analyze the role of prior knowledge of the target model data and number of classes in attack performance. We also provide several interesting insights based on our analysis, and demonstrate that priors cause overestimation in transferability scores. Finally, we extend our framework to query-based attacks. This extension inspires a novel image-blending technique to prepare data for effective surrogate model training.
Abstract:We investigate bias trends in text-to-image generative models over time, focusing on the increasing availability of models through open platforms like Hugging Face. While these platforms democratize AI, they also facilitate the spread of inherently biased models, often shaped by task-specific fine-tuning. Ensuring ethical and transparent AI deployment requires robust evaluation frameworks and quantifiable bias metrics. To this end, we assess bias across three key dimensions: (i) distribution bias, (ii) generative hallucination, and (iii) generative miss-rate. Analyzing over 100 models, we reveal how bias patterns evolve over time and across generative tasks. Our findings indicate that artistic and style-transferred models exhibit significant bias, whereas foundation models, benefiting from broader training distributions, are becoming progressively less biased. By identifying these systemic trends, we contribute a large-scale evaluation corpus to inform bias research and mitigation strategies, fostering more responsible AI development. Keywords: Bias, Ethical AI, Text-to-Image, Generative Models, Open-Source Models
Abstract:The increasing pace of population aging calls for better care and support systems. Falling is a frequent and critical problem for elderly people causing serious long-term health issues. Fall detection from video streams is not an attractive option for real-life applications due to privacy issues. Existing methods try to resolve this issue by using very low-resolution cameras or video encryption. However, privacy cannot be ensured completely with such approaches. Key points on the body, such as skeleton joints, can convey significant information about motion dynamics and successive posture changes which are crucial for fall detection. Skeleton joints have been explored for feature extraction but with image recognition models that ignore joint dependency across frames which is important for the classification of actions. Moreover, existing models are over-parameterized or evaluated on small datasets with very few activity classes. We propose an efficient graph convolution network model that exploits spatio-temporal joint dependencies and dynamics of human skeleton joints for accurate fall detection. Our method leverages dynamic representation with robust concurrent spatio-temporal characteristics of skeleton joints. We performed extensive experiments on three large-scale datasets. With a significantly smaller model size than most existing methods, our proposed method achieves state-of-the-art results on the large scale NTU datasets.
Abstract:Older people are susceptible to fall due to instability in posture and deteriorating health. Immediate access to medical support can greatly reduce repercussions. Hence, there is an increasing interest in automated fall detection, often incorporated into a smart healthcare system to provide better monitoring. Existing systems focus on wearable devices which are inconvenient or video monitoring which has privacy concerns. Moreover, these systems provide a limited perspective of their generalization ability as they are tested on datasets containing few activities that have wide disparity in the action space and are easy to differentiate. Complex daily life scenarios pose much greater challenges with activities that overlap in action spaces due to similar posture or motion. To overcome these limitations, we propose a fall detection model, coined SDFA, based on human skeletons extracted from low-resolution videos. The use of skeleton data ensures privacy and low-resolution videos ensures low hardware and computational cost. Our model captures discriminative structural displacements and motion trends using unified joint and motion features projected onto a shared high dimensional space. Particularly, the use of separable convolution combined with a powerful GCN architecture provides improved performance. Extensive experiments on five large-scale datasets with a wide range of evaluation settings show that our model achieves competitive performance with extremely low computational complexity and runs faster than existing models.
Abstract:Existing novel object 6D pose estimation methods typically rely on CAD models or dense reference views, which are both difficult to acquire. Using only a single reference view is more scalable, but challenging due to large pose discrepancies and limited geometric and spatial information. To address these issues, we propose a Single-Reference-based novel object 6D (SinRef-6D) pose estimation method. Our key idea is to iteratively establish point-wise alignment in the camera coordinate system based on state space models (SSMs). Specifically, iterative camera-space point-wise alignment can effectively handle large pose discrepancies, while our proposed RGB and Points SSMs can capture long-range dependencies and spatial information from a single view, offering linear complexity and superior spatial modeling capability. Once pre-trained on synthetic data, SinRef-6D can estimate the 6D pose of a novel object using only a single reference view, without requiring retraining or a CAD model. Extensive experiments on six popular datasets and real-world robotic scenes demonstrate that we achieve on-par performance with CAD-based and dense reference view-based methods, despite operating in the more challenging single reference setting. Code will be released at https://github.com/CNJianLiu/SinRef-6D.